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Abstract 

This paper presents a reformulation of a set of polynomials that can be used to generate TVI 

curves. The reformulation initially looks perhaps a bit unfamiliar, since it is not in the standard 

“canonical form”. However, this reformulation has some advantages over the standard form.   

One of the benefits of the reformulation is to be more readily interpreted. A TVI curve can be 

numerically described as having coefficients for the 50% TVI, for the “lean” of the curve, and 

for the “bulge” of the curve. These three coefficients are expressed directly in the formula so that 

they can be readily determined.  

A second benefit of the reformulated polynomials is that adjustments of the TVI curves are 

easier to compute. In particular, changing from, for example, a 21% TVI to a 22% TVI requires 

changing a coefficient from 0,21 to 0,22. If the TVI curve needs to lean more to the left, the lean 

coefficient is made a bit more negative. If the TVI curve needs to be fatter, the bulge coefficient 

is increased, 

A third benefit of the reformulated polynomials is that they lend themselves to a mathematical 

technique for least squares curve fitting. Standard polynomial regression techniques, such as 

those available in Excel, will not generally provide a polynomial that goes exactly through zero 

at a tone value of 100%. The reformulated polynomials are guaranteed to be exactly zero at 0% 

TV and 100% TV. While Excel does not provide a simple function for doing regression with the 

reformulated polynomials, the necessary calculations can be implemented in Excel. 

Relevant parts of the standards 

The most recent draft of 12647-2 has provided TVI formulas, in addition to the plots and 

tabulation of the target TVI at a number of specific tone values. See ISO 12647-2, section 

4.3.4.1, Note 5, of N 1060. 

Providing formulas for the TVI curves is useful in that target TVIs may be determined for tone 

values not included in the table. I would like to propose that the formulas be presented in a way 

that is perhaps a little more user friendly and readily calculated. In the first section of this paper, 

I present the language that appears in the current draft, and my proposed alternative that is 

mathematically equivalent to the current draft. 

In the second section of this paper, I provide a proposal for an annex to describe the benefits of 

the different approach.  



The third section of this paper is more of a theoretical nature. While the accompanying 

spreadsheet provides a way to perform the regression, this third section describes the theory so 

that this could be incorporated into a piece of software. 

Language for section 4.3.4.1, note 5, 12647-2  

Existing language (N 1060 draft) 
 

 



 

Proposed alternative language  
Note 5    For process calibration and control purposes it is sometimes necessary to calculate the 

tone value increase aim values for additional tone values. For this an exemplary equation 

describing the curves in Figure 2 is given as follows: 

  

where 

TVI   is the tone value increase as a percentage value; 

p1, p2, and p3  are fundamental TVI curves, described below; 

a, b, c  are the coefficients of p1, p2, and p3, representing TVI, lean, and bulge, 

respectively. 

x   is the tone value, normalized between 0 and 1; that is, x = TV / 100; 

TV   is the tone value in % ranging from 0 to 100; and 

   

   

   

The coefficients are given in Table 7. 

Table 7 – Coefficients for tone value increase curves in Figure 2 

Coefficient 
Tone value increase curve 

A B C D E 

a (TVI) 16,0 19,0 22,0 25,0 28,0 

b (lean) -0,3 0,9 2,0 2,6 3,2 

c (bulge) 0,6 0,9 1,2 0,7 0,1 

 

Language for 12647-3 

Similar language should appear in the note in section 4.3.5.1. Table 6 should be changed so that 

TVI (the coefficient a) should be 26, lean (the coefficient b) should be 2.3, and bulge (the 

coefficient c) should be 0.  

Proposed annex 

Annex XX 



(informative) 

Fundamental TVI curves 

The so-called “fundamental TVI curves” described in the body of this document are perhaps a bit 

unfamiliar, so they deserve a bit of explanation. The curves could be described in the standard 

canonical form for a fourth order polynomial. Indeed, these are just reformulations of fourth 

order polynomials. For example, the equation for TVI curve E in Table 7 is 

 

 

 

This could have been written more concisely as  

 

The two equations are mathematically equivalent. Although the first formulation is more typing 

and at first glance appears more complicated, there are a number of advantages to this longer 

form. 

Figure XX shows the three fundamental TVI curves, , , and . The first thing to 

note is that all three of the polynomials are zero at both , and . This assures that the 

TVI curve will be zero at these points regardless of the choice of coefficients. 

Figure XX – The three fundamental TVI curves 

 



As can be seen, the first curve, , has the general overall parabolic shape of a TVI curve. 

Since the other two curves are designed to be zero at , the coefficient of this curve is 

identical to the TVI at 50%. In the example above, the TVI at 50% is quite readily seen to be 

28%. If a change in TVI at 50% is required, this may be accomplished by changing the first 

coefficient. 

The second fundamental TVI curve, , defines the lean of the curve. If the value is this 

coefficient is positive, then the TVI curve will lean to the left. A left-leaning TVI curve will 

reach a maximum TVI will below a tone value of 50%. A negative value will cause the 

maximum to occur above 50%. The larger the second coefficient (in magnitude) the farther the 

maximum will move from 50%. This second coefficient is analogous (but not equivalent) to the 

statistical term “skewness”. 

Figure XX is an example of the effect of adding lean to the TVI. The curve t1 is the TVI curve 

generated with a TVI of 15 with no lean parameter. The curve t2 is the TVI curve with a lean 

parameter of 2.0. That is to say, 

   

   

Figure XX – The affect of the lean parameter 

 

Note that adding in lean will change the maximum TVI. In this example, the maximum TVI is 

15.42 with the lean parameter added in, as opposed to 15 without this parameter. The amount of 

TVI at 50%, however, remains constant. 

The third fundamental TVI curve, , defines the bulge of the TVI curve. If the bulge 

coefficient is positive, the resulting TVI curve will bulge out more than a parabola. A negative 



bulge coefficient will not bulge out quite as much as a parabola. The bulge coefficient is 

analogous (but not equivalent) to the statistical term “kurtosis”.  

Figure XX is an example of the affect of adding bulge to a TVI curve. The curve t1 is, as in the 

previous example, a 15% TVI curve with no lean or bulge. The curve t2 shows the affect of 

adding a bulge of 2. 

   

   

Figure XX – The affect of the bulge parameter 

 

The fundamental TVI curves are designed to have a maximum of very close to 1. This is 

reflected in the choice of -4, 21, and 64 as coefficients buried in the formulas. (The curve  

has a maximum of roughly 1,01. The benefit of having this be exactly 1,00 was weighed against 

the cleanliness of having the number 21 in the formula instead of 20.7846.) 

Since the maximum of the curves is 1,00, it is easy to look at the coefficients of , , 

and  to determine the magnitude of the affect of each. For example, in the equation for TVI 

curve E in Table 7, it can be seen that the lean parameter, which is 3,2, will change the TVI by 

no more than 3,2%. The bulge parameter, 0,1, is insignificant, since it can’t change the TVI by 

more than 0,1%. 

Solving for coefficients via regression 

-- This section is additional background material, and may not belong in the standard. -- 



The idea of linear regression is perhaps narrowly understood by the scientific community. As it 

is commonly used, it refers to the act of finding a set of coefficients for a standard polynomial 

that provide the best match to a set of data. 

This is one form of linear regression. It may appear that this is a misnomer, since  and  are 

not linear equations. One may have wondered whether the phrase was misappropriated, and 

should only be applied to the act of finding the coefficients m and b in the linear equation 

. 

The phrase linear regression is properly used to refer to polynomial regression, but is perhaps 

misunderstood. More broadly, linear regression refers to the act of finding the linear 

combination of a set of basis functions so as to give the best fit to a set of data. Linear 

combination means that each of the functions is to be multiplied by a coefficient and the products 

are then to be added together to produce the final curve. Linear regression determines the “best” 

set of coefficients. 

The simplest example of linear regression – fitting a line to data – uses the functions “1”, and x 

as the basis functions. For polynomial regression, the basis functions are  This is 

linear regression because one is trying to find a linear combination of these functions. 

Although it is not generally thought of this way, the Fourier transform is another example of 

linear regression. In this case, the basis functions are not polynomials, but are sine and cosine 

functions. 

Another example of linear regression is multiple linear regression, in which there are a number 

of independent variables and one wishes to find the linear combination of these parameters 

which gives the best fit to a set of dependent data. For example, one may wish to use multiple 

linear regression to describe the L* value as a function of the cyan, magenta, yellow, and black 

tone values. 

For this paper, the basis functions are , , and .  

   

   

   

These basis functions were chosen so that they all equal are to zero at a tone value of 0 and at 

tone value of 100%. Since this is the case, all linear combinations of them will also go through 

zero at these points. 

The second and third basis functions ( , and ) were chosen to be zero at a tone value 

of 50%. In this way, the coefficients of these two basis functions will not effect that 50% tone 

value increase. 



The second basis function was chosen to be anti-symmetric about a tone value of 50%. In this 

way, it could serve a purpose similar to the skew parameter in statistics. The third basis function 

was chosen to mimic the kurtosis parameter.  

When taken together, any linear combination of the three basis functions is a fourth order 

polynomial which is zero. The converse is also true. All fourth order polynomials which are zero 

at  and at  can be expressed as a linear combination of these basis functions. 

What all of these examples of linear regression have in common is that they can be solved with 

the same general mathematical technique. Suppose one has decided that the basis functions that 

were previously described ( , , and ) are the appropriate ones to use. And 

suppose that one has a set of dot gain data that looks like this: 

TV TVI 

0,20 9 

0,40 13 

0,60 12 

0,80 8 

 

I evaluate each of the basis functions at each of the tone values, and assemble them into the 

following matrix. 

 

Next, I put together a column vector of the TVI values. 

 

Finally, we create a column vector of the weights to be applied to each of the basis functions. 

The values in this vector are unknown at this point. They are what I am trying to find. 

 

We are trying to find a least squares solution to the following equation. That is, we are trying to 

find values for the three variables in the b vector that come closest to making this an equality. 

 

The least squares solution is this: 



 

The symbols in the equation are the standard symbols for linear algebra. “T” means transpose, 

which is inverting the rows and columns of the matrix. “-1” means taking the inverse of the 

matrix. 

The delightful thing about this least squares equation is that it is perfectly general. I can any 

number of basis functions, and those basis functions can be whatever functions I want. For 

example, if the basis functions are “1”, and , I can use this to derive the formula for linear 

regression. If I include , and , I can use this to derive the formula for cubic polynomial 

regression. As another example, if those basis functions are sine and cosine functions, I can 

perform a Fourier transform for frequency analysis. 

This formula can also be extended to multiple linear regression. Let’s say, for example, we 

wanted to investigate how TVI changed with changes in density. In this case, one of our basis 

functions might be solid ink density, another might be tone value, and a third might be the 

product of the two. 

The only limitation to this approach is that we can only use this when the values of the basis 

functions can be computed directly from the independent variables. That is to say, the left hand 

side of the equation  can’t depend on any of the unknown parameters in the vector b. An 

example of where we can’t use the formula is where one of our basis functions is the exponential 

decay function, , when we are trying to find the decay rate k. 

 

 

 

 


