

Capabilities and Limitations of Color Measurement with an RGB Camera

Summary

Web inspection systems (with RGB cameras) offer CIELAB measurements.

They are not very accurate.

Summary

There is a distinction between measuring CIELAB and measuring ∆E

RGB cameras *can* measure ∆E "accurately enough"

R B Ok, so what's a CIELAB?

- CIELAB (or L*a*b) measures color
- CIELAB sees color the way people do
 Well... kinda
- A measurement of color is three numbers
- The numbers uniquely define the color
- If L*a*b* values are the same, the colors match

G Ok, so what's a CIELAB?

- CIELAB (or L*a*b) measures color
- CIELAB sees color the way people do
 Well... kinda
- A measurement of color is three numbers
- The numbers uniquely define the color
- If L*a*b* values are the same, the colors match

Now that we have CIELAB

Matching by the eye is a thing of the past!!

Did I mention that I am in research?

What's a ΔE ?

- A ∆E (pronounced delta-E) is a measure of color difference
- Useful for setting tolerances
- 1 ∆E is pretty small
- 10 ∆E is moderate
- 100 ∆E is way big

100 ΔE is the difference between black and white

What's a ΔE ?

Ideally 1 ∆E should have been a "just noticeable difference" in color.

But...

But...

 $5 \Delta E$ difference in the saturation of yellow is just noticeable.

0.5 ΔE difference around gray is just noticeable.

What's a ΔE ?

So they revised the formula:

The original: ΔE , or ΔE_{76} , or ΔE_{ab} First revision: ΔE_{CMC} (1984) Second revision: ΔE_{94} Third revision: ΔE_{00} Fourth revision: ΔE_{99} , or DIN 99 ΔE

The wonderful thing about standards is that there are so many to choose from!

We will use the original ΔE .

from the Summary...

CIELAB from an RGB camera is not accurate enough

∆E from an RGB camera is accurate enough

First thought

the human visual system can discern down to 1 ΔE (kind of)

so a color measurement system has to do the same

Second thought

press variation is larger than 1 ΔE

how close do we need to hold color anyway?

The ISO standard

ISO 12647-6:2006(E) Graphic technology – Process control for the production of half-tone colour separations, proof and production prints – Part 6: Flexographic printing, Section 4.3.2.3

Patches on the proof must match the numbers

This is not a concern for an online measurement device

Proof

	L*	a*	b*
С	55	-36	-44
М	46	70	-3
Y	84	-5	88
К	20	0	0

OK sheet

Patches on the OK sheet must match the proof to within 8 ∆E

Proof

	L*	a*	b*
С	55	-36	-44
М	46	70	-3
Y	84	-5	88
К	20	0	0

Proof

OK sheet

68% of patches in production must match the OK sheet to within 2.5 ΔE

Production

Accuracy tolerances of 8 ΔE in measuring color ok sheet

The SPC folks say we need accuracy of at the very least 2.4 Δ E and preferably 0.8 Δ E

Accuracy tolerances of $2.5 \Delta E$ in measuring production sheets

The SPC folks say we need accuracy of at the very least 0.75 ΔE and preferably 0.25 ΔE

Vendor claims

- "Colour monitoring with deviations calculated and expressed in delta E (@E) value."
- "Based on the CIE-Lab colour"
- "on-line accurate L*a*b* color measurement & management"
- "accurate in-line color measurement"
- "Today, online color monitoring accuracy has reached levels previously attainable only with the use of handheld spectrophotometers."
- "...independent tests were undertaken to study the correlation of color results between [the web inspection system] and a spectrodensitometer. The results... found **almost a perfect** correlation..."
- "Accuracy: CIELab colour value: $1 \Delta E$ "
- "Today's online technology allows color deviation to be measured as accurately as $0.2 \Delta e$."

That's what marketing has to say

What does the scientific literature say?

Review of literature

Author(s)	Data	Method	Accuracy	
Kang & Anderson	236 patches (QC60)	s (QC60) 3X6 Matrix		
Viggiano & Wang	236 patches (QC60)	Principal Component Analysis (PCA)	4.1	
Wandell & Farrell	214 CMYK	3X3 Matrix	6.0	
"	۲۵	3X3 Matrix + correction	2.4	
Sodergard et al.	236 patches Newsprint	13 term polynomial	5.8	
Seymour (1997)	995 CMYK	3X9 Matrix	2.0	
"	24 Pantone	دد	7.0	
Seymour (2009)	11,664 CMYK	3X9 Matrix	1.5 – 2.4	
Brydges, et al.	24 Newsprint	3X9 Matrix & PCA	1.2 -1.4	
Ben Chouikha et al.	93 NCS set	3X3 Matrix	11.6	
"	.د	3X3 Matrix + 3rd order CIELAB regression	2.4	
ςς	CRISATEL acrylic	3X3 Matrix + 3rd order	53	
	chart	CIELAB regression	5.5	
Urban, et al.	1269 Munsell + Vrhel database	Metamer analysis	4.1 - 8.2	

Review of literature

The most optimistic results are just barely good enough for color ok...

and no where near good enough for the production run.

Proof

OK and Production sheets will have wrong CIELAB values

68% of patches in production must match the OK sheet to within 2.5 ΔE

Same camera and stock

OK sheet

Hopefully the errors will be similar

> Here we need ∆E accuracy

Production

For color ok For production CIELAB values must be accurate ∆E values must be accurate

Accuracy of ΔE

Summary of results from my TAGA 2009 paper

on CMYK colors

Accuracy of ΔE

Correct ∆E values

RGB derived ΔE values

Accuracy of ΔE

False determination rate

Camera 1	3.2%
Camera 2	3.3%
Camera 3	2.6%
Status E	2.6%

When assessing pass/fail

An RGB camera and a spectro will agree 97% of the time

Conclusions from TAGA 2009

RGB camera can't measure CIELAB "accurately enough".

RGB camera *can* measure ∆E "accurately enough". You can't use an RGB camera for color OK.

You *can* use an RGB camera for production run.

The TAGA paper tested CMYK

Will Pantone work the same?

R B What about specialty colors?

I started with the spectra of 1,124 Pantone colors

I developed an RGB → CIELAB transform for these inks

Specialty colors - CIELAB

	СМҮК	Set	Pantone	Set
	Mean ΔE	95 th %	Mean AE	95 %
Camera 1	1.8	4.5	3.6	8.9
Camera 2	2.3	5.4	4.8	14.0
Camera 3	1.8	4.3	4.4	10.0
Status E	1.5	3.2	4.2	10.2
Camera 3 Status E	1.8 1.5	4.3 3.2	4.4 4.2	14. 10. 10.

CIELAB accuracy – not so good

I repeated the CMYK <u>∆E</u> test

Only with Pantone

	CMYK	Set	Pantone	Set
	Mean ΔE	95 th %	Mean ΔE	95 %
Camera 1	0.16	0.52	0.21	0.90
Camera 2	0.22	0.72	0.49	2.29
Camera 3	0.20	0.61	0.22	0.91
Status E	0.17	0.52	0.19	0.83

∆E accuracy – not too bad

Conclusions for Pantone Inks

RGB camera can't measure CIELAB "accurately enough".

RGB camera *can* measure ∆E "accurately enough". You can't use an RGB camera for color OK.

You *can* use an RGB camera for production run.

From CMM 2009 paper

Conclusions for CMYK inks

RGB camera can't measure CIELAB "accurately enough".

RGB camera *can* measure ∆E "accurately enough". You can't use an RGB camera for color OK.

You *can* use an RGB camera for production run.

From TAGA 2009 paper

Conclusion

RGB cameras can be used to measure color

... but you have to understand the limitations.

Thank you!

John Seymour Principal Engineer - Research QuadTech